

What role for decision making under uncertainty in climate policy analysis? Brief overview of some recent work at PIK

Elmar Kriegler

Uncertainty in climate change modeling and policy analysis ADVANCE Expert Workshop, Milan, May 14, 2014

Acknowledgment

Alexander Otto (né Lorenz)

Matthias Schmidt

Hermann Held

Lorenz A, Schmidt MGW, Kriegler E, Held H (2012): *Anticipating Climate Threshold Damages*. Environmental Modeling and Assessment 17: 163-175.

Lorenz A, Kriegler E, Held H, Schmidt MGW (2012) *How important is Uncertainty for the Integrated Assessment of Climate Change?* Climate Change Economics 3(1): 1250004.

Schmidt MGW, Lorenz A, Held H, Kriegler E (2011) *Climate Targets under Uncertainty: Challenges and Remedies*, Climatic Change Letters 104(3-4): 783-791.

Schmidt MGW, Held H, Kriegler E, Lorenz A (2013) Climate Policy Under Uncertain and Heterogeneous Climate Damages, Environmental and Resource Economics 54:79-99.

Key question: When does DMU make a difference?

Comparison of welfare and policy outcome in:

- Best guess deterministic optimization: $max_c W(c, E(\vartheta))$
- Expected value stochastic optimization: $max_c E(W(c,\vartheta))$

Observations from the literature

- there can be large differences in cost-effectiveness settings (e.g. Held et al., 2009)
- mostly small differences in cost-benefit settings (e.g. Nordhaus, 1994, 2008). Exceptions are studies with catastrophic damages, fat tails, tipping points.

Cost-effectiveness setting

Chance constrained programming (CCP), if uncertainty about emissions & climate outcome is incorporated

e.g. maximize welfare subject to reaching 2°C with > 50% probability (Held et al., Energy Economics 31, 2009)

Conceptual problems of CCP in dynamic settings (Schmidt et al., CCL, 2011)

- negative value of information (or infeasibility) if a posterior after learning runs against constraint
- first period decision can be heavily influenced in CCP setting due to impossibility to relax constraint

Cost-benefit setting (Lorenz et al., CCE, 2012)

Reasons for small difference between best-guess and exp. value optimization:

- ABCP small: Non-linearity of climate damage function overcompensated by saturation of emissions to ΔT relationship plus welfarization of damages (→ discounting)
- BOAU small: strongly increasing mitigation costs.

Cost-benefit setting (Lorenz et al., CCE, 2012)

What makes a larger difference between best-guess and exp. value optimization?

- Increase non-linearity of damage function (quadratic to exponential)
- linear cumulative emissions to ΔT relationship

mitigation effort [GtC](zero equals 3165 GtC)

Uncertain and heterogenous climate damages (Schmidt et al., ERE 2013)

Part 1: Uncertainty

- Damages D \sim N(μ , σ) affect only a fraction k < 1 of the population
- Equal per capita consumption before damages: y
- Consumption of affected individuals: $c_1 = y D/k$
- Certainty equivalent assuming CARA utility: $c^* = y \mu/k A/2 \sigma^2/k^2$

Part 2: Inequality

 $W(c_1,c_2,k) = k v(c_1^*) + (1-k) v(c_2=y)$ with v concave (e.g. of CARA type)

Combined effect of risk & inequality aversion

Four cases:

- Society risk and inequality neutral (solid red)
- Society risk averse, but inequality neutral (dashed red)
- Society risk neutral, but inequality averse (solid black)
- Society risk and inequality averse (dashed black)

Application to DICE

Four cases:

- Society risk and inequality neutral (solid red)
- Society risk averse, but inequality neutral (dashed red)
- Society risk neutral, but inequality averse (solid black)
- Society risk and inequality averse (dashed black)

