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1. Executive summary

This deliverable completes the work which has advanced the representation of uncertainty
and technical progress in Integrated assessment models (IAMs). In particular, three new
methodological applications have been developed and tested.

The first paper, “From Shared Socio-Economic Baseline Assumptions to CO2 Fossil Fuels
Emissions”, has developed and tested a new way to represent uncertainty in IAMs. Traditionally,
IAMs have represented parameter uncertainty using Monte Carlo techniques which allow to
change one factor at the time. However, these methods do not allow to capture the interaction
between parameters. Interactions are important because IAMs output is not a linear combination
of input parameters. In order to overcome this obstacle, specific methods have been developed to
carry out ‘Global Sensitivity Analysis’. However, these are computationally intensive, limiting their
applicability to model comparison studies. In this paper, we have developed a new decomposition
method which reduces the computational costs while allowing to compute both individual and
interaction effects. We have applied this novel methodology to assess the role of key factors in
determining emissions in the newly developed Shared Socio Economic scenarios (SSPs). The
study involves 6 IAMs from the ADVANCED consortium, testifying to the feasibility of the
approach in a large multi model assessment. All details are reported in the accompanying paper.

The other application is discussed in the paper “Modelling to generate alternatives: A
technique to explore uncertainty in energy-environment-economy models”. The technique of
modelling to generate alternatives (MGA) allows to relax one key assumption of IAMs, meaning
that of cost optimality. In reality, due to uncertainties in political and behavioural elements,
economic optimization can be hardly achieved in reality. MGA allows to map the diversity of
different energy systems that lie within its near cost minimum solution space, allowing to assess
the stability of the solution outside its optimality. This technique has been applied to one IAM from
the ADVANCE consortium, assessing a business as usual (BAU) case and a global CO2
reduction pathway scenario applied to SSP2. Full details are presented in the attached article.

The final example, “Decision frameworks and the investment in R&D”, has used yet another
technique to incorporate uncertainty into IAMs. The paper uses importance sampling to assess
how to best allocate Research&Development investments in low carbon technologies. The paper
uses real data from three large expert elicitation studies and a incorporates them into an 1AM.
The results show that is is important to account for both the prospects for technological
advancement and the interactions of the technologies in and with the economy.

All papers provide significant advancement with respect to the existing literature, and have
shown that incorporating new methods to represent uncertainties is indeed feasible in large scale
IAMs. This has allowed to assess the robustness of the IAMs results, and to attribute the sources
of uncertainty to different fundamental policy drivers. The first two paper papers will be submitted
to high impact peer review journals, while the third has been already published in the highly read
journal “Energy Policy”.
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Abstract

Climate Change Research has recently seen the introduction of five narratives, called
Shared Socio-economic Pathways (SSPs), to describe alternative potential society
developments with respect to the economy and the energy system. Different SSPs are
distinguished by many factors, which influence the evolution of emissions as well as the
ability to mitigate or adapt to them. The goal of this paper is to understand how
cumulative CO2 emissions from fossil fuels, and in turn the resulting policy
implications, depend on baseline assumptions. Most influential uncertain sets of inputs
and their interactions are identified when moving from a middle-of-the-road scenario to
either a green or a challenging world. To perform such quantification, we leverage on the
results of six renowned climate-economy-energy integrated models. The sensitivity on
the variable of interest is performed via discrete changes to five sets of inputs, regarding
population, income per capita, energy intensity, fossil fuel availability and low-carbon
energy technology development. Setups for these inputs are taken from the first three
SSPs. It turns out that in the medium term, i.e. up to 2050, the top influencers of fossil
CO2 emissions will be changes in energy intensity and economic growth. Different
population pathways yielded the lowest impact. Resource and technology assumptions

lie inbetween.



Introduction

The scientific community supporting the assessment of climate change policies with
Integrated Assessment Models (IAMs) almost always rely on baselines, i.e.
business-as-usual scenarios with given assumptions on future society, economy,
resources availability and technology development. These generally exclude explicit
measures for limiting GHGs, and serve as benchmarks when evaluting costs and
benefits of such measures. Thus, these costs and benefits depend on and are at most as

plausible as the baselines they refer to.

Climate Change Research has recently seen the introduction of five narratives, called
Socio-economic development Pathways [7], to describe alternative potential society
developments with respect to the economy and the energy system. Different SSPs are
distinguished by both quantitative aspects, like specific country population and GDP,
and qualitative descriptions, like high/low carbon intensity improvements or high/low
energy intensity improvements, which influence the evolution of emissions as well as
the ability to mitigate or adapt to them. Given the deep uncertainty of these aspects,
considering a space of possible scenarios is necessary when using Integrated Assessment
Models (IAMs) to robustly evalute climate policies and reliably inform the climate policy

debate.



The goal of this analysis is to understand how the output of models, and in turn the
resulting policy implications, depend on baseline assumptions, identifying the most
influential uncertain sets of inputs and their interactions for different IAMs. Such
research has several potential benefits for both modellers and policy makers: to assist in
focusing modelling efforts on those inputs whose uncertainty counts the most, to direct
decision making attention to the main drivers of the results, and to better understand
whether only a subset of assumptions in the narratives like the SSPs would be enough to
cover a similar uncertainty space. This parsimonious attitude towards inputs and
assumptions becomes more and more desirable, as uncertainty can be thoroughly
treated only up to few dimensions and IAMs become more advanced and

computationally burdensome (i.e. curse of dimensionality).

Literature review

Several sensitivity exercises were performed in the past on IAMs. Nordhaus [6], by
varying one factor at a time (OFAT) in a 1-6 standard deviation range, assessed the
sensitivity of the social cost of carbon and GHG emissions of DICE, one of the most
popular IAM, to 8 exogenous inputs. The ranking of key drivers simply depended on the
distance of the factors from their mean values. The same sensitivity exercise was later
expanded in different ways. Anderson et al. [1] did not limit the analysis to preselected

inputs. Their sensitivity rankings also accounted for the whole sampled distributions,



comparing the relative importance of all the parameters of DICE with respect to SCC,
emissions and temperature. A similar study was performed by Butler et al. [3],
providing a comprehensive model diagnostic evaluation that explicitly accounts for the
parametric interactions and dependencies between DICE coupled climate and economic
components. They find that uncertainties in population estimates, future technology
efficiency, carbon intensity of production, and the emergence of replacements for

carbon-based energy sources are the most critical to several relevant cost metrics.

The space of scenarios envisioned by SSPs framework was already taken into
consideration for sensitivity purposes in Rozenberg et al. [9], who questioned the
definition of SSPs and identified energy sobriety, equity and convergence as the most
important factors in explaining future differences in challenges to adaptation and
mitigation. In a way the present paper continues along this line of research, using

different methods and employing multiple models.

Methods

Among the five scenarios defined in the SSP framework, we focus on the
middle-of-the-road baseline, named SSP2, and two alternative ones, namely SSP1 and
SSP3, towards either smaller or greater mitigation and adaptation challenges
respectively. A partial but important proxy for such challenges is given by the level of

cumulative CO, emissions from fossil fuels and industry over the next decades (CO2FFI
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in short). Six IAMs (GEM-E3, IMAGE, IMACLIM, MESSAGE, TIAM-UCL and WITCH)
implemented the assumptions behind these scenarios (see SI for details), and reported
this output of interest. It turns out that different scenarios yield different CO2FFI levels,

with SSP1 and SSP3 on the lower and upper ends respectively (Supplementary Fig. 2?).

SSPs differ under many regards, so it is hard to say a priori what is really driving the
observed changes. We assume that the output comes from specific choices on
socio-economic and energy-related inputs and parameters, which we group in 5 main
categories: population (POP), GDP per capita (GDPPC), energy efficiency improvements
(END), fossil fuels availability (FF) and low carbon energy technology development
(LC). Each of these macro inputs can take either SSP1, SSP2 or SSP3 level, and when all
five groups are referring to the same SSP, they provide the corresponding SSP scenario
implementation, net of neglected input features like land use, which only marginally

affect our output of interest, i.e. CO2FFL

Given this setup, we are able to design a scenario protocol to attribute the observed
change in output to changes in these five groups of inputs when deviating from the
middle SSP2 case to either one of its two variants here considered. We use in particular
the scenario decomposition scheme by [2], illustrated in Figure 1, which provides
information on the sensitivity to the single scenario features and their interactions with a

linear computational cost in the number of inputs.
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The 3 base SSP scenarios and their sensitivity counterparts are implemented either
under a business as usual case (BAU), i.e. no coordinated climate policy enforced, or
under a mild global carbon tax (CTAX30), for a total of 46 scenarios provided by each of

the 6 models.

Results

Sensitivity of CO2FFI in 2050 can be visualized with the aid of a generalized tornado
plot (see Figure ??). When moving from SSP2 to SSP1, we observe a reduction in CO2FFI
of 19.5% on average (left panel, BASE row). Thick transparent bars show the effects of
moving individually each input category. For example, population alone on average
brought emissions down by 3%, ranking last in affecting output. Fossil resources and
low-carbon technology related assumptions rank inbetween the others, with a highly
model-dependent effect. FF ranges from a 20% decrease to a null effect, while LC has a
milder extreme effect of 10%, with even a small positive impact on the other side of the
spectrum. Economic and energy intensity assumptions drive most of the change, at least
individually, with a CO2FFI effect range of 8-25% and 6-25% in absolute value for END
and GDP respectively. While similar in average magnitude, these two factors have
exactly opposite sign, due to the SSP1 design. It turns out high income per capita

counterbalances the low energy intensity with a potentially uncertain net effect, driven
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eventually down by a general predominance of END, with the help of the other factors

pushing in the same direction.

The sum of the individual effects does not yield the observed BASE change across SSPs.
This is due to the fact that by changing simultaneously we may have interaction effect,
either amplifying or dampening the changes obtained by individual actions. LC and FF,
for example, show a mild attentuation when interacting with the other inputs, with few
exceptions. Again, the factors playing a major role are found in the END and GDP
categories. And again, two opposite behaviors are found. Consistently across all models,
GDP reduces its effect, going from an average of 18% to 11%. On the other side, END
exhibits a heterogenous behavior: GEM-E3, IMACLIM and MESSAGE foresee no
significant interactions; for IMAGE and WITCH it behaves like GDP, reducing its
magnitude of impact; in TTAM-UCL it amplifies with the other inputs. Averaging across

models the effect ranks first in magnitude.

Let us now move back to a middle-of-the-road situation and transition towards the more
challenging world of SSP3 (right panel of Figure ??). The change in output is more
diverse and model-dependent: the less-green component counterbalances the
less-growth one with different net results. CO2FFI does increase, but in a range from 1%
to 35%. Compared to the previous case, impacts have opposite signs, making the
tornado plot in figure look quite symmetrical. Rankings of magnitudes are also similar.

One important difference is due to the role of interactions, which this time amplify the

8
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negative effect of GDP and dampen the positive effect of END. Here, the average total

effect of GDPPC turns out to be greater than the one of END.

In Table 1 we can see how the ranking of CO2FFI drivers change over time and across
climate policies. For each model, year and climate policy, a total effect without sign is
estimated and normalized across factors, so that the most influential one is equal to 100.
Ranges are obtained by bootstrapping the average across the available estimates by the 6
models, repeating the process for each factor, year and climate policy. In the medium
term, i.e. up to 2050, a carbon tax leaves the ranking on average unaltered. Model
uncertainty becomes more relevant though, as ranges generally widen. In the long term,
few things change first in the BAU. POP becomes more relevant. LC is becoming on
average more relevant in SSP1 and much less relevant in SSP3. The opposite happens for
FF. GDPPC is pushed further down in SSP1, while getting full agreement across models
for the first place in SSP3. END loses ranking points while widening its range. Adding
the CTAX30 on the long run, rankings are further blurred, with notable exceptions of a
clear lower ranking for LC in SSP1, GDPPC in SSP1, and END in SSP3, with GDPPC

keeping a full ranking in SSP3.

Conclusions

Averaging results over models, END and GDPPC occur to be the most influential factors

in explaining the observed change in cumulative fossil fuels CO2 emissions. FF and LC

9
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play an intermediate role, while POP scored last. Results are conditional to the width of
uncertainty span by SSPs storylines (e.g. limited variation in population up to 2050
induces a minor role for population), the specific modelling choices in implementing the
storylines and the different modelling responses. The ranking is also affected by the fact
that individual impacts of input groups can be dampened or reinforced when these are
varied together, which is the case for GDPPC for example, leading it behind END in
SSP1 and above END in SSP3 in the ranking. Results exhibit similarities over time and

with the addition of a mild carbon tax, even though they generally blur the rankings.

Further research would be needed to cast more light on the mechanics of interactions
and on the correlations between deviations from means and models characteristics. It
would be also useful to separate model response differences from model
implementation differences. Such efforts, along with those undertaken in this paper, can
provide important insights in a yet lacking and far from conclusive literature on IAMs

sensitivity to baseline assumptions uncertainty.
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Methods

Socio-economic pathways. The narratives behind the SSP scenarios are explained
qualitatively in [8]. In particular, this work focuses just on the first 3 SSPs, which, if they
were to be located in a mitigation vs adaptation challange space, would belong to the
main diagonal. Here we assume that SSP scenarios are implemented by changing model
inputs belonging to one of 5 categories, described below. Differences between SSP1 and

SSP3 choices are highlighted, assuming that SSP2 lies somewhere in the middle.

e POP: refers to assumptions on regional population over the century. Estimates
have been developed by the International Institute for Applied Systems Analysis
(ITASA) at country level[5]. SSP1 has lower global population growth, while in

SSP3 the latter is low in industrialized and high in developing countries.

e GDPPC: refers to assumptions on regional income per capita over the century.
These are obtained by dividing the GDP level projections obtained with the
ENV-Growth model by OECD specialists for the SSP scenarios[4] with the
population levels above. SSP1 features a favorable economic growth, while SSP3

economy is weakened by international fragmentation.

e END: refers to assumptions on energy intensity. Qualitatively, SSP1 features a fast
phase-out of traditional fuels, modest service demands and low energy intensity of

services due to improved resource efficiency. SSP3 goes in the opposite direction,

11
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with continued reliance on traditional fuels, high service demands and high energy
intensity of services. Quantitatively, levels of world final energy demand per unit
of GDP were harmonized across models and scenarios with the same END

assumptions.

FF: refers to assumptions on fossil fuels availability. Qualitatively, SSP1 features a
fast decrease in fossil fuel dependency, reluctance to use unconventional fossil
resources, slow extraction technology improvements and no trade barriers. SSP3
instead involves supportive policies to both conventional and non-conventional
fossil fuels, with a medium to high development of extraction technology, partially
counterbalanced by high trade barriers and support of energy security goals.
Quantitatively, levels of world fossil primary energy per unit of primary energy

were harmonized across models and scenarios with the same FF assumptions.

LC: refers to assumptions on low-carbon energy technologies availability.
Qualitatively, SSP1 features high development and high social acceptance of
non-biomass renewables, along with a medium development and low social
acceptance of nuclear. On the other side, SSP3 involves low development and
medium social acceptance of non-biomass renewables, along with low to medium
development and high social acceptance of nuclear. Quantitatively, levels of world
renewables and nuclear primary energy per unit of primary energy were

harmonized across models and scenarios with the same LC assumptions.

12
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Elements related to land use and CCS are left out from this analysis. The assumption is
to leave them unchanged at their SSP2 levels. Thus, in principle a scenario with all 5
input categories at level 1 is different from an SSP1 scenario with its comprehensive
implementation. Nonetheless, we expect the listed categories to cover most of the
driving factors behind our main output variable of interest (i.e. baseline CO2 from fossil

fuels emissions).

Scenario decomposition. Let focus on a single model output y € R, e.g. global
cumulative fossil fuels and industry CO, emissions in the period 2010-2050. We assume
that each model m € 1,..., M provides y for each vector z belonging to its feasible

parameter space x,, via a response function f,,,(-) : xm — R.

Each model in principle has its own parameter space and response function. To find a
common ground, we identify a scenario space, i.e. a space with setups implementable
across models in a consistent way. We describe such scenario space by discrete vectors
x = [r1,...,2, € {0,1}". Each component z; is a scenario feature, which is
model-independent, and can be either at its nominal value (i.e. 0) or deviate to an
alternative value (i.e. 1). Here, the scenario features are POP, GDPPC, END, FF and LC.
Nominal levels correspond to SSP2 assumptions, while alternative levels correspond to

either SSP1 or SSP3 assumptions.

13



17

Second, a map is needed to translate these common scenarios to implementable
parameters combinations, i.e. a function g,,(-) : 0, 1" = . for each model. Hence, we

can associate each scenario  with a model response vy, = fin(gm(x)) = hn(x).

When moving from the nominal scenario z° = [0, ..., 0] to its alternative counterpart
' =[1,...,1], we observe a finite change in the output Ay = h,, (') — h,,,(z°). To
understand the contributions of the i-th scenario feature z; in determining this change,

we express the latter as the following finite sum of terms[2], dropping the model index

m for brevity:

Ay = h(z") — h(z") = Z Aih + Z Ajjh+-+A1n b 1)
i=1 i<j
where:
o Ajh=nh([2l,23, ... 2, af,ad ..., 2] — h(x") is the observed change in output
due to the individual change in the i-th scenario input;
o Ajjh=nh([2Y,29, ... 2, al, 2,2l . a)] = Aih— Ajh — h(z) is

the change in output due to the simultaneous change in scenario inputs i and j net

of the sum of the individual effects of i and j;

e and likewise for longer indices.

We then introduce the following finite change sensitivity indices:

14
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I
e ¢! = Ajh and its normalized version ¢/ = z—l will be referred to as the individual
Y
effect of input [;
T
LD DD S, isir<...<ip, Dy i h and its normalized version ®; = Al will be
2Vl by y

referred to as the total effect of input 7, including all the finite changes terms

involving that input;

o ¢/ — ¢! will be referred to as the interaction effect of input i, and will be equal to the
sum of all contributions to Ay involving a change in input ¢ plus changes for some

other inputs.

The number of interacting terms determinig the total effect is exponential in the number
of inputs. Nonetheless, a shortcut exists to evaluate the total effects with a number of
evaluations of y (and thus runs of a model) linear in the number of inputs. This depends

on the fact that total effects can be also calculated as[2]:

ol = h(x") — h([z], 73, . .. ,xil_l,xo leﬂ, ) (2)

R ’Un

This motivates the table of runs asked to be run by each model (see Supplementary Table

1).

Integrated Assessment Models. The sensitivity analysis was repeated with six

renowned global climate-energy-economy models. This provides useful information on

15
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high robust the results are to model uncertainty. The six models considered are briefly

described below.

¢ GEM-E3 (National Technical University of Athens, Greece) is a general equilibrium
model that puts emphasis on: i) the analysis of market instruments for
energy-related environmental policy, such as taxes, subsidies, regulations, emission
permits etc., at a degree of detail that is sufficient for national, sectoral and
World-wide policy evaluation; ii) the assessment of distributional consequences of
programmes and policies, including social equity, employment and cohesion for

less developed regions.

e IMACLIM (CIRED, France) is a recursive dynamics hybrid model, combining a
general equilibrium approach with technology explicit modules. It is intended to
study the interactions between energy systems and the economy;, to assess the
feasibility of low carbon development strategies and the transition pathway

towards low carbon future.

e IMAGE (PBL, The Netherlands) is a recursive dynamics model that can be
described as a geographically explicit assessment, integrated assessment
simulation model, focusing a detailed representation of relevant processes with
respect to human use of energy, land and water in relation to relevant
environmental processes. The model aims 1) to analyse interactions between

human development and the natural environment to gain better insight into the

16
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processes of global environmental change; 2) to identify response strategies to
global environmental change based on assessment of options and 3) to indicate key
interlinkages and associated levels of uncertainty in processes of global

environmental change.

MESSAGE (IIASA, Austria) is an energy engineering partial equilibrium model
soft-linked to general equilibrium model. At its core it is a technology-detailed
energy-engineering optimization model used for energy planning. Through
linkage to macro-economic, land-use and climate models it is capable of taking into
account important feedbacks and limitations in these areas outside of the energy

system.

TIAM-UCL (University College London, England) is an energy systems partial
equilibrium model. It uses the TIMES modelling platform (formerly MARKAL),
and was originally intended to analyse energy systems. Scenario based simulations
maximize the total discounted sum of consumer and supplier surplus over the
model horizon, while taking into account the constraints (e.g. energy demand to be

tulfilled, availability of energy resources etc).

WITCH (FEEM, Italy) is a hybrid economic optimal growth model, including a
bottom-up energy sector and a simple climate model, embedded in a game
theoretic setup. It evaluates the impacts of climate policies on global and regional

economic systems and provides information on the optimal responses of these

17
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economies to climate change. It also considers the positive externalities from
learning-by-doing and learning-by-researching in the energy-related technological

change.

Climate policies. The sensitivity analysis is performed twice, one for each of the

following climate policy.

e BAU: no specific climate policy;

e CTAX30: carbon tax, starting in 2020, increasing at 5%/yr, and equal to 30

US$2005/tCO2eq in 2040.

18



End Notes

Acknowledgements The research leading to these results has received funding
from the European Union’s Seventh Framework Programme [FP7/2007-2013] under

grant agreement n°30832.

19

22



2]

[3]

[5]

23

References

Barry Anderson et al. “Uncertainty in Climate Change Modeling: Can Global
Sensitivity Analysis Be of Help?” In: Risk Analysis 34.2 (2014). 00000, pp. 271-293.
ISSN: 1539-6924. DO1: 10.1111/risa.12117. URL: http:
//onlinelibrary.wiley.com/doi/10.1111/risa.12117/abstract
(visited on 02/27/2014).

E. Borgonovo. “Sensitivity analysis with finite changes: An application to modified
EOQ models”. In: European Journal of Operational Research 200.1 (Jan. 1, 2010). 00028,
pp- 127-138. 1SSN: 0377-2217. DOI: 10.1016/7j.ejor.2008.12.025. URL: http:
//www.sciencedirect.com/science/article/pii/S0377221708010631
(visited on 05/31/2013).

Martha P. Butler et al. “Identifying parametric controls and dependencies in
integrated assessment models using global sensitivity analysis”. In: Environmental
Modelling & Software 59 (Sept. 2014), pp. 10-29. 1SSN: 1364-8152. DOTI:
10.1016/j.envsoft.2014.05.001. URL: http:
//www.sciencedirect.com/science/article/pii/S1364815214001327
(visited on 12/10/2014).

Rob Dellink et al. “Long-term economic growth projections in the Shared
Socioeconomic Pathways”. In: Global Environmental Change (July 9, 2015). 00006.
ISSN: 0959-3780. DOI1: 10.1016/j.gloenvcha.2015.06.004. URL: http:
//www.sciencedirect.com/science/article/pii/S0959378015000837
(visited on 01/13/2016).

Samir KC and Wolfgang Lutz. “The human core of the shared socioeconomic
pathways: Population scenarios by age, sex and level of education for all countries
to 2100”. In: Global Environmental Change (July 4, 2014). 00024. 1SSN: 0959-3780. DOI:
10.1016/j.gloenvcha.2014.06.004. URL: http:
//www.sciencedirect.com/science/article/pii/S0959378014001095
(visited on 01/13/2016).

William D. Nordhaus. A question of balance: economic modeling of global warming.
00163. Yale University Press New Haven, 2008.

Brian C. O’Neill et al. “A new scenario framework for climate change research: the
concept of shared socioeconomic pathways”. In: Climatic Change 122.3 (Oct. 15,
2013). 00125, pp. 387—400. 1SSN: 0165-0009, 1573-1480. DOI:
10.1007/s10584-013-0905-2. URL:
http://link.springer.com/article/10.1007/s10584-013-0905-2
(visited on 01/12/2016).

20



24

[8] Brian C. O’Neill et al. “The roads ahead: Narratives for shared socioeconomic
pathways describing world futures in the 21st century”. In: Global Environmental
Change (Feb. 12, 2015). 00017. 1SSN: 0959-3780. DOTI:
10.1016/7j.gloenvcha.2015.01.004. URL: http:
//www.sciencedirect.com/science/article/pii/S0959378015000060
(visited on 01/13/2016).

[9] Julie Rozenberg et al. “Building SSPs for climate policy analysis: a scenario
elicitation methodology to map the space of possible future challenges to mitigation
and adaptation”. In: Climatic Change 122.3 (Sept. 13, 2013). 00021, pp. 509-522. ISSN:
0165-0009, 1573-1480. DOI: 10.1007/s10584-013-0904~ 3. URL:
http://link.springer.com/article/10.1007/s10584-013-0904-3
(visited on 01/12/2016).

21



25

Figures

Figure 1 | Logic behind the scenario protocol design for decomposition analysis. Each
input is moved from a reference level (i.e. the one used in SSP2) to an alternative level

(i.e. the one used either in SSP1 or SSP3). This gives information on the individual effect
of the input on the output. An opposite scheme is used to infer information on the total

effect of the input.

Figure 2 | Generalized tornado plot of the CO2FFI variable in 2050, BAU case, against
the 5 inputs changing from SSP2 to either SSP1 or SSP3. The BASE row shows the
relative response change for each model in CO2FFI when moving from SSP2 to either
SSP1 (on the left) or SSP3 (on the right). The rows below instead reports the normalized
sensitivity indicators relative to each scenario input. Individual effects are reported with
transparent thicker bars, total effects with solid thinner bars and interaction effects with

striped bars.
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Tables

Table 1 | Ranges of normalized total effects of inputs on CO2FFI over time and under
two different climate policies. For each model, year and climate policy, a total effect
without sign is estimated and normalized across factors, so that the most influential one
is equal to 100. Ranges are obtained by bootstrapping the average across the available

estimates by the 6 models, repeating the process for each factor, year and climate policy.

Deviation SSP1 <+ SSP2 SSP2 — SSP3

Year 2050 2090 2050 2090

Policy BAU CTAX30 BAU CTAX30 BAU CTAX30 BAU CTAX30

Input

END 59-94 62-92 34-96 28-88 40-90 25-89 19-61 15-31

GDPPC 59-82 60-93 25-43 20-37 81-97 89-100 100-100 100-100

FF 20-85 11-81 18-86 6-81 10-42 9-47 8-67 3-78

LC 22-69 22-69  5-81 15-28 10-60 5-49 5-15 6-54

POP 9-34 9-42 18-57 21-84 4-13 5-22 7-16 12-57
Table 1
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From Shared Socio-Economic Baseline Assumptions to CO2
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Supplementary Figures

Supplementary Figure 1 | CO2 emissions from Fossil Fuel and Industry with potential
drivers. First line: yearly CO2 emissions from fossil fuels and industry throughout the
century. Second line: yearly world population, yearly GDP (PPP) per capita, yearly final
energy per unit of GDP (PPP), yearly share of primary oil, coal and gas supply over all
primary energy supply, and yearly share of primary renewables (including biomass) and
nuclear supply over all primary energy supply. All values taken as reported in the SSP
database (SSPDB) by the 5 SSP marker models. In grey: SSPDB results by each marker

model. In pale red: min-max range. In blue: average.

Supplementary Figure 2 | CO2 emissions from Fossil Fuel and Industry across BAU
SSP1, SSP2, SSP3 scenarios, as implemented in this exercise. With solid lines: results

from the 6 models. In pale red: min-max range for the SSPDB.

Supplementary Figure 3 | CO2 emissions from Fossil Fuel and Industry difference
between BAU SSP2 and either SSP1 or SSP3 scenarios, as implemented in this
exercise. With solid colored lines: results from the 6 models. Black line: 0 difference with

SSP2. In pale red: min-max range for the SSPDB.

Supplementary Figure 4 | Time series of representative variables for the 5 considered

scenario inputs, plotted across scenarios sharing similar assumptions for that input in
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the BAU case. Plot shows proxy variables used to check agreement between SSPDB
ranges (shaded in red) and results collected in the sensitivity scenarios of this exercise.
The closer the line to the red shade, the close the implementation to its SSP definition. 5
variables were chosen as proxy for implementation proximity with respect to the 5 main
input categories explored in the text (the same listed in Supplementary Figure 1): global
population size for POP, GDP (PPP) per capita for GDPPC, final energy per unit of GDP
PPP for END, share of fossil fuels (i.e. oil, coal, gas) per unit of primary energy for FF,
and share of low-carbon energy (biomass, non-biomass renewables and nuclear) per unit
of primary energy. Each subplot contains results for the ensemble of scenarios sharing
the input setup expressed in the title, e.g. under “Population SSP1” we find
BAU_SSP1_BASE, BAU_SSP1_GDPPC2, BAU_SSP1_END2, BAU_SSP1_FF2,

BAU_SSP1_LC2, BAU_SSP2 POP1.

Supplementary Figure 5 | Boxplot across models of total and interaction effects on

CO2FFI till 2050 vs 2090, BAU case.

Supplementary Figure 6 | Boxplot across models of total and interaction effects on

CO2FFI till 2050, BAU vs CTAX30 case.
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Supplementary Figure 1 | CO2 emissions from Fossil Fuel and Industry with potential drivers.
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Supplementary Figure 2 | CO2 emissions from Fossil Fuel and Industry across BAU SSP1, SSP2,
SSP3 scenarios, as implemented in this exercise.
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Supplementary Table 1 | Details on the implementation by 5 of the 6 modelling teams of the

END, FF and LC changes across SSP levels.

Model

Energy Demand

Fossil Fuels

Low-carbon Techs

GEM-E3

IMACLIM

IMAGE

TIAM-UCL

WITCH

Regional energy intensity im-
provements from WITCH

Motorisation rate / residential
space / industrial goods con-
sumption increase w/ wealth.

Preference factor for low carbon
fuels, energy intensity for ser-
vices, reliance on trad. fuels

Growth in the service / indus-
trial sectors via demand curves
exponents.

Factor productivity of energy
in the production function tree.
Transport fuel eff. and travel in-
tensity.

Reserves from ROSE project.
Prices follow.

Extraction costs and availability
of unconventional oil/gas.

Learning factors, trade barriers.

Extraction costs and availability
of oil/gas.

Reserves and extraction costs
from ROSE project.

LbD rates of Non-BIO REN.

LbD rates and max potential of
REN (opposite for NUC).

Learning factors of REN and H2
(opposite preference for NUC),
support for REN capacity.

Inv./O&M costs of REN, max
potential of BIO, support for
NUC capacity.

LbD rates of REN and battery.
Inv./O&M costs of NUC.

10



Supplementary Table 2 | Names and details of the scenarios needed for the decomposition
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analysis and implemented by modellers. Each number under an input column refers to the setup

taken from the corresponding SSP base scenario for that input.

Scenario #

Scenario Name POP GDPPC END

FF LC

SSP2_BASE
SSP2 POP1
SSP2_GDPPC1
SSP2_END1
SSP2_FF1
SSP2_1L.C1

N

N

N

O 0| U1 = WN -

SSP2_POP3
SSP2_GDPPC3
SSP2_END3
SSP2_FF3
SSP2_LC3

SSP1_BASE
SSP1_POP2
SSP1_GDPPC2
SSP1_END2
SSP1_FF2
SSP1_LC2

SSP3_BASE
SSP3_POP2
SSP3_GDPPC2
SSP3_END2
SSP3_FF2
SSP3_LC2

W W W WNWIFRERFEPERFERPFEDNDEFEREINDNNDNDNDNOOIDDMNNDNDNDND -

WWWNWWRWRPRPRPRPRPNNRPRPRL,INDNNDNONINDNNDDNDRDN
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Modelling to generate alternatives: A technique
to explore uncertainty in
energy-environment-economy models

James Price” and Ilkka Keppo

UCL FEnergy Institute, Central House, 14 Upper Woburn Place, London, WC1H ONN

*james.price@ucl.ac.uk

Introduction

Avoiding dangerous global climate change, a goal that has been defined by international
political agreement as limiting global mean surface temperature to a rise of no more than
2°C above pre-industrial levels, is probably the greatest challenge currently facing human-
ity. Achieving this goal will require large scale changes to the global energy system that
serve to mitigate greenhouse gas emissions, and indeed are environmentally sustainable in
the wider sense, while at the same time radically enhancing energy equity and maintaining
continuity of supply.

Long time horizon energy-environment-economy models (hereafter E3 models) are one
set of tools that can provide valuable insight into possible transition pathways which sat-
isfy at least a stylised version of this formidable trilemma and as such provide key support
to decision makers. However, a critical challenge when working with E3 models is appro-
priately exploring the large uncertainties inherent in the modelling procedure. Without
careful elucidation, analysts and policy makers alike can be misled by the precision of
the model output and lured into a false sense of security at the certainty of the implied
energy system transition(s). We note that E3 models themselves adopt a broad range
of under-lying methodologies and here we specifically focus our discussion on those that
optimise some system parameter, usually seeking to minimise total system cost although
other objectives may be equally valid, in a linear programming framework.

In general, E3 models function in a deterministic way, producing a single cost optimal
pathway that meets the set energy service demands subject to any additional constraints
that have been imposed on it (e.g. a cumulative greenhouse gas emission budget). Of
course, it is very unlikely that today’s, or indeed future, decision makers will follow such
a well-defined cost optimal pathway, particularly on a global scale. In addition to such
structural uncertainties, i.e. the model’s formulation does not capture the full complexity
of the real energy-environment-economy system, there are also significant input parameter
uncertainties, e.g. the evolution of the capital cost of solar PV throughout the model’s
time horizon.

Parameter uncertainty is usually assessed using Monte-Carlo methods, within which
we include more targeted scenario or sensitivity analysis as well as more general sampling
techniques, which function by repeatedly perturbing input parameters in some way, solving
the model and generating new realisations of the model’s output (see e.g. [Pye et al.|(2015)).
Once a sufficient number of realisations have been obtained it is then possible to establish
probability distributions for key output parameters.

Exploring the impact of uncertainty associated with structural assumptions or simpli-
fications on the other hand requires altering the underlying formulation of the model while
keeping its input parameters fixed. Here we use the technique of modelling to generate
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alternatives (MGA; |E. Downey Brill et al.| (1982); |DeCarolis| (2011)); [Trutnevyte and Stra-
chan! (2013)) to relax one key assumption of an E3 model, that of cost optimality, and map
the diversity of different energy systems that lie within its near cost minimum solution
space. The aim being to assess the stability of the results implied by the model’s least
cost solution and to search for consistent insights that emerge under at least a portion of
the full structural uncertainty budget. Viewed from a different but related perspective,
MGA can also be used by the analyst to provide information on possible pathways which
may meet additional criteria that decision makers value while at the same time being near
least cost, e.g. what would a pathway look like with higher shares of renewables than the
cost optimal solution.

In this study we apply MGA, the specific methodology of which will be detailed in a
later section, to the TIMES Integrated Assessment Model in University College London
(TTAM-UCL), a global E3 model built within the International Energy Agency’s Energy
Technology System Analysis Program (IEA-ETSAP) TIMES frameworkﬂ

The Model

TIAM-UCL is a technology rich, bottom-up, cost optimising global energy system model
instantiated within the generic and flexible TIMES model generator General Algebraic
Modelling System (GAMS) code. The model aggregates the Earth’s countries into 16 re-
gions, each with their own energy system which is represented by technologies (processes)
and commodities covering resource extraction/supply of all primary energy sources (e.g.
coal, gas, oil, nuclear, biomass and renewables) through conversion and eventually culmi-
nating in end-use demand. On the supply side, fossil and biomass resources can be traded
between regions while energy service demands are exogenously prescribed at the regional
level based on drivers such as GDP, GDP per capita and population. The model runs
from its base year of 2005 to 2100, first in 5 year intervals and then after 2050 in 10 year
intervals. Within these periods the model “sees” the same energy service demands on a
yearly basis so, for example, the 2020 interval has the same demands between 2018 and
2022.

In standard formulation, the aim of the model is to ensure supply at least matches
demand (i.e. supply > demand) across the energy systems of all regions and for all
time-steps simultaneously while minimising total system cost (the objective function) and
subject to all specified user constraints. This linear program is solved by the commercial
optimiser CPLEX. In the MGA methodology described in the next section, which involves
maximising a new objective function, the supply/demand matching is altered such that
supply = demand throughout the entire energy system. Also, owing to the computational
expense of the technique, the model is run from 2005-2050.

The MGA Method

MGA is a general, catchall term for any method that seeks to sample the near cost optimal
solution space of a model and has a number of steps that are, typically, common to all
implementations of the technique:

1. The model is solved in standard formulation and a least cost energy system transition
pathway obtained.

2. The total system cost of this pathway, scaled up by a small amount or slack (usually
> 1%), is entered into the model as a new constraint. Here we use a cost slack of 1%,
i.e. the new constraint is total_system_cost < optimal_system_cost * 1.01, chosen
both to demonstrate the technique and to ensure that solutions produced are very
close to the cost minimum. We note that the deviation of real world decision makers
away from cost minimisation may well be significantly larger (Trutnevyte, 2015]).

"http://www.iea-etsap.org/web/Times.asp
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3. A new objective function is formulated with the specific aim of exploring the near
optimal region defined by the constraint in step 2. This reformulation of the model
is also subject to all constraints from the standard formulation in step 1.

The scope of possible formulations for the new objective function is large and could
include, for instance, maximising the amount of primary energy from wind or minimis-
ing the utilisation of certain end-use technologies, with both energy systems being only
marginally more expensive than the optimal run. Here we use an objective function for-
mulation that searches for a set of transition pathways that are very nearly least cost but
also maximally different from one another in terms of the fuel mix of their cumulative
primary energy consumption:

.. ik
maximise D"

D% =" |PE! — PEf| (1)

7

s.t. tot_sys_cost < optimal_sys_cost x 1.01

where ¢ is a set that includes all the primary energy carriers considered, i.e. coal, gas,
oil, biomass, nuclear, wind, solar, tidal, hydropower and geothermal, PE is the cumulative
consumption (summed globally and temporally between 2010-2050) of that primary energy
carrier and D’* is the set of L1 or Manhattan distances between this MGA iteration
(7) and all previous iterations including the optimal run (k). That is, the first MGA
iteration (j = 1) is generated such that its primary energy consumption is maximally
different (greatest possible distance) from that used by the optimal run. For the next
MGA iteration the set k includes the optimal and the first MGA iteration and the set D7*
now contains two distances, the minimum of which must be maximised. The procedure
can then be repeated, each time ensuring that the newly generated scenario is maximally
different from all previous pathways and we note that this particular iterative approach
to MGA has been applied outside the energy and climate field in a number of studies
(Loughlin et al., [2001}; |[Zechman and Ranjithan, [2007; Rosenberg, 2015]).

In this way the subset of model solutions that exist within the cost space defined
by the new constraint added in equation [1| is sampled and a set of radically different
pathways obtained. As will be shown, this set of pathways then allows the analyst to
begin to understand how stable and robust various features of the energy system transition
proposed by the cost minimal solution are by identifying key consistencies across MGA
iterations. Such a set can also begin to facilitate an exploration of additional criteria that
may be of interest to decision makers.

The Scenario

The purpose of this study is to describe and then demonstrate the implementation of a
form of MGA within a whole energy systems model and to that end we use a version of the
TIAM-UCL representation of Shared Socio-economic Pathway 2 (hereafter SSP2). SSPs
are a new scenario framework that detail a range of plausible future story lines for the
evolution of the global socio-economic system and are being used by the climate change
community to carry out research on impacts, adaptation and mitigation (for further de-
tails see (ONeill et al.| (2014))). SSP2 describes a so-called “middle of the road” world with
intermediate challenges to mitigation and adaptation with respect to SSP1 and SSP3.
Quantitatively, this is implemented in TIAM-UCL using projections of country level pop-
ulation and GDP per capita, provided by the OECD and aggregated to the model’s 16
regions, combined with a set of assumptions which are calibrated to the SSP marker mod-
elﬂ for final energy demand, low carbon technology availability and fossil fuel resource

’https://tntcat.iiasa.ac.at/SspDb/dsd?Action=htmlpage&page=about

42


https://tntcat.iiasa.ac.at/SspDb/dsd?Action=htmlpage&page=about

Il Coal Il Gas I Nuclear Il Hydrogen
H Oil Biomass Renewables Electricity
2.0
=30
c 1.6
225 T T
Q.
S
520 1.2 :I:
o
U ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
215
(@)}
= 0.8
S _n
2‘10 i
© 0.4
E s
o
— 2.0
4.8 g
.§
@4,0 o 1.6 - -
'5 3.2 '%
T 8712
> [J)
3 o
a24 E‘ ”””””””””””””””””””””
2 20.8
O .©
S1.6 @
g > = o
w ®0.4 -
0.8 IS
o
o
— “-2.0
N
c7 o
o
B8 1.6
o
£6
35
£ 5
S 1.2
: 1
8 B B B 1 1 [ By DS S—
2
©
C
2
£ 0.4
21 .
C
o
|_

OptimalMGA1 MGA2 MGA3 MGA4 MGA5

Figure 1: Results from applying MGA to our BAU scenario. The left column shows,
from top to bottom, cumulative global primary energy consumption, electricity produc-
tion and final energy consumption in transport between 2010-2050 (inclusive). The right
column assesses the fractional variability of each energy carrier across the MGA runs in
the corresponding left panel with respect to the optimal.
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Figure 2: CO9 emissions from fossil fuel and industry for our BAU scenario, including the
optimal pathway and all MGA iterations.

potentials. We consider both a business as usual (BAU) case and a global CO4 reduction
pathway scenario applied to SSP2, i.e. 50% cut relative to 2005 levels by 2050 with emis-
sions peaking in 2015 and linearly declining. However, it is worth pointing out that the
detailed specifics of the underlying scenarios used here are not of key importance, apart
from it being in keeping with those used by other cutting edge E3 models, as they are
employed as a means to showcase our implementation of MGA and its ability to examine
optimal solution stability.

Results
BAU

First we begin by analysing the results from our BAU scenario which are shown in Fig.
The top left panel of this figure displays cumulative global primary energy consumption
between 2010-2050, i.e. the metric whose difference is maximised between each MGA run
and all those previous to it including the least cost solution, for the cost optimal run
and five MGA iterations while the top right panel shows the fractional variability of each
energy carrier across the MGA runs with respect to the optimal. Note the variability
panel is not a standard box plot but simply reports a maximum and minimum variation
over the MGA iterations normalised by the results of the optimal run. From this plot, it is
immediately apparent that sizeable variability is seen for important, i.e. significant shares
of total primary energy, fuels such as coal and gas. The former varies by ~ 4+ 50% across
the runs while the latter ~ 4+ 30% and so we see that just a minor deviation away from
the structural assumption of cost optimality leads to large uncertainty in primary energy
carrier consumption under this scenario. That said, by comparison one consistent insight
does begin to emerge in terms of oil consumption, which shows variability of < +20% and
~ -10%.

The middle and bottom panels of Fig. [1| take a more sectoral view of the outcome of
applying MGA to this scenario and allow us to assess how the variability at the primary
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energy level propagates through the energy system. The middle left panel shows cumula-
tive global electricity production again between 2010-2050. Here we see the variability of
coal and, in particular, gas discussed above mapping through to the power sector. Indeed,
all fuel sources considered show a significant, i.e. ~ + 50%, spread. However, as shown
in the bottom pair of panels in Fig. [T a consistent result is identified for the cumulative
final energy consumption of oil in the transport sector. This indicates that this sector
continues to rely heavily on oil even when total system cost is allowed to increase by 1%.

Fig. [2| shows an alternative view of how the variability of energy carrier consumption
discussed above impacts the energy system. Here we see how an increase in coal use in
MGA1, MGA3 and MGA4 relative to the optimal drives the system along a much higher
CO2 emissions trajectory. In fact, COo emissions from fossil fuel and industry in MGA1
are almost 50% larger than those in the optimal run in 2050. On the other hand, MGA2
and 5 have significantly less emissions throughout the model’s time horizon in part because
they rely less on coal and more so on gas and renewables in the power sector, respectively.

To summarise, in this section we have demonstrated that applying a relatively small
cost slack of just 1% to our BAU scenario and seeking to map the diversity of solutions
within that cost space leads to significant variability around the optimal solution’s results
throughout the energy system. Put another way, these results highlight how unstable
certain parts of the optimal solution are to fairly minor alterations in this portion of the
model’s structure.

50% CO; reduction

Next we move on to examining how a small deviation from the structural assumption of
cost optimality impacts our mitigation scenario. Fig. [3|displays the results for the optimal
run and a set of MGA iterations in the same format as Fig. [I} It is immediately apparent
that all panels in the former figure show less variability than in the latter case. In primary
energy terms, particularly consistent results stand out for oil, biomass and renewables with
only coal use showing a sizeable range, i.e. ~ +50% to ~ -20%. Renewables and nuclear
appear to be stable features of the power sector and, while not shown here, a similar plot
for 2050 alone indicates that the near complete decarbonisation of the electricity system
by that year is a robust finding across the MGA iterations. In the transport sector, the
spread in oil use is again small (~ £ 10%) indicating consistency in the narrative that
electricity generation would be expected to decarbonise before transport when the energy
system is responding to mitigation targets.

To show how the transition of the energy system proceeds in this scenario as a function
of time, in Fig. 4| we plot the same three left hand panels as in Fig. [3| but this time at
5 yearly steps between 2010-2050 rather than cumulative totals over that period. This
chart demonstrates the growth of renewables in the power sector and the steady decline
of oil use toward mid century in transport. It also serves as a feasibility check for the
pathways found by the MGA method used here by showing that no large or erratic jumps
are observed and differences between MGA iterations and the optimal typically grow as
one moves closer to 2050 and the model’s flexibility increases.

In summary, the results presented in this section demonstrate how the MGA technique
used here can assess the impact of structural uncertainty on key model output and establish
that, while in some cases the spread of results is large, consistent insights do emerge. It
is of particular importance to communicate such information to policy makers whose task
it is to make robust decisions under uncertainty.

Conclusions

This work has described and demonstrated an MGA approach that generates a number of
near cost optimal energy transition pathways which, within the context of the metric used
here, are maximally diverse. We have shown that this technique can be used to elucidate
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Figure 4: Plot showing how different components of the global energy system evolve
between 2010-2050 in our mitigation scenario. The panels are the same as the left hand
column of Fig. [I] but at 5 yearly steps rather than cumulative over the modelled period.
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how structural assumptions in an energy system model may result in sizeable uncertainties
across the system but also employed to tease out robust and consistent insights. At the
same time, MGA can also be used to explore whether pathways in the near cost optimal
space could address additional, unoptimised criteria. We believe both facets of MGA are
important when working at the science-policy interface.

That said, while such near optimal methods are useful for characterising model flexibil-
ity, they assess but a portion of the model’s full uncertainty budget and it remains a topic
of further research to include both parametric and structural uncertainty simultaneously.
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1. Introduction

The ultimate goal of collecting information on the impacts of R&D and of running simulations on
Integrated Assessment Models (IAMs) is to inform decision making. In this paper we discuss how R&D
data and IAM outputs can be used in different decision frameworks, and the impact that the different
frameworks have on the ultimate results. We do this with an objective of providing insights into the

optimal government funded energy technology R&D portfolio.

The Elicitation and Modeling Project (TEaM)? has provided a set of probability distributions over the
outcomes of energy technology R&D investment, based on three sets of expert elicitations performed
over 5 years by three different research teams [Anadon et al. [ (2011), (2012), (2014)], Baker et al.|
(2008), (2008), (2009), (2009), (2010), (2011)], Bosetti et al. [ (2011), (2011), (2012)]]. The R&D
outcomes are measured in terms of the future performance of energy technologies, including their costs
and efficiencies. Though it is informative to consider the impact of R&D investments on these
technological outcomes, it is also important to consider how specific technological outcomes are likely
to impact economy-wide outcomes. The implications of R&D on the cost of a specific technology might
be very large, but if there are less expensive alternatives to that technology, this impact might be
smaller than one would expect prior to a general or partial equilibrium analysis. In order to evaluate the
impact of technology improvements on societal outcomes, the TEaM project has used three IAMs —
GCAM, Markal, and WITCH — to translate technological characteristics into metrics of interest, such as
the cost to achieve a particular carbon emissions path, or the diffusion of different technologies into the
economy. In this paper we focus on results from GCAM, but a similar analysis can be done using the

results from the other IAMs.

2 http://www.feem.it/getpage.aspx?id=4278&sez=research&padre=18&sub=70&idsub=86&pj=ongoing

3
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Baker et al. (2014) presented the results of the effort to collect, standardize, and aggregate the results
from the expert elicitation surveys, highlighting the diversity of results that stem from differences across
experts and studies. In the present paper we analyze the impact of this diversity, as well as the impact of

the decision framework, on optimal decisions about R&D investment allocations.

While an understanding of the distribution of data about technology inputs is very important, it is not
easy to anticipate a priori how data distributions translate into economic results and finally into optimal
decisions. In some cases, a wide range of probability distributions may nevertheless lead to a single
robust decision (Baker & Solak, 2011); while in other cases probability distributions that look very similar
may lead to divergent decisions. It is important to note that the optimal decision under uncertainty is
not necessarily some average of the optimal decisions under certainty, nor is it necessarily near the
optimal decision under a central case ((Baker, 2009); (Dow & Werlang, 1992)). For example, Santen and
Diaz Anadon (2014) show that the investment path in solar R&D is qualitatively different under
uncertainty, with a high initial investment followed by a very low investment in the deterministic case,

and a medium initial investment followed by high investments in the stochastic case.

Some past work has shown optimal technology R&D portfolios to be surprisingly robust to assumptions
about climate damages, about the opportunity cost of R&D, and about the underlying policy
environment (i.e. a Stern-type stringent policy vs a Nordhaus-type mild policy) (Baker & Solak, 2014).
Other work has shown that the type of policy (e.g., whether CO2 emissions are limited at all, through a
cap and trade program, or through a clean energy standard for electricity) affects the optimal R&D

investment portfolio (Anadon, et al., 2014).

Different questions require different decision support frameworks. In a world in which a stabilization
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goal has been chosen through political negotiation, then clearly the best framework is one that takes
this goal as given. However, in a world in which decisions about environmental goals are ongoing, and
are likely to depend on the outcome of uncertainties, a framework that allows for flexible adjustment of
the strategy once learning about technological outcomes and/or climate damages has taken place is
more appropriate. Additionally, some people argue that in a world with multiple conflicting probability
distributions, decision frameworks should account for ambiguity-aversion. In this paper we consider
how the optimal R&D portfolio differs across elicitation teams, and when (1) the stabilization pathway is
a second stage choice compared to when it is given; and (2) the impact on a one-stage model of using a

simple ambiguity-averse framework.

We consider how to use both the set of expert elicitation data collected in the TEaM project and energy-
economic models to best support decision making. A first, important question is what the purpose is of
explicitly including uncertainty in energy-economic models, specifically into IAMs. One reason for
explicitly including uncertainty into models is to avoid nasty surprises; in the jargon of economics, we
are concerned about risk aversion. Decision makers may be willing to give up some value with certainty
in order to reduce the chance of a very negative outcome. A second reason is that some alternatives
may have what is called “option value”: they may provide us with flexibility to react to uncertain
outcomes in the future, thus increasing their overall value. These kinds of alternatives cannot be
identified without explicitly considering uncertainty. A third reason is what Sam Savage has termed the
“Flaw of Averages” (Savage, 2009), or what economists know as Jensen’s Inequality: the expected value
of a non-linear function is not generally equal to the function of the expected value. All three of these
reasons have one thing in common — non-linearities. In a non-linear system it is crucial to explicitly
include uncertainty, or else risk significantly mischaracterizing the situation. Energy technology R&D in

the face of climate change is a highly non-linear problem. Finally, some of the literature has argued that
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when the underlying probability distribution is deeply uncertain, ambiguity aversion should also be

taken account of.

In the rest of this paper we discuss different frameworks for combining probabilistic data on energy
technology R&D with IAMs in order to support decision making and present numerical results based on
different elicitations and decision frameworks. In Section 2 we discuss a number of different frameworks
and discuss the optimization models that we focus on. In section 3 we describe our detailed numerical
example, comparing decision frameworks across different elicitation teams. Along with presenting
assumptions, data, and solution methods, we discuss the methods for integrating the elicitation data
into IAMs. In Section 4, we present the results of our numerical example; and provide a discussion and

conclusions in Section 5.

Section 2: Frameworks for Uncertainty Analysis.

2.1. Decision frameworks

In this subsection we discuss a set of frameworks, including sensitivity analysis, Monte Carlo type
analysis, single-stage decision making under uncertainty (DMUU), sequential DMUU, and full stochastic-
dynamic programming. We conclude this subsection by discussing some frameworks to account for

ambiguity aversion.

Sensitivity Analysis: When there is uncertainty over the values of inputs, the first level of analysis is
sensitivity analysis. This is the most common approach taken by Integrated Assessment modelers.

Sensitivity analysis can reveal which parameters are most important to carefully characterize, and can
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sometimes provide an estimate for how outputs of interest change with the uncertain input parameters.
An example of sensitivity analysis is provided in this issue, in (Bosetti, et al., 2014). In this paper they
consider how a range of technological parameters impact emissions paths and costs of stabilization.
They find that the results vary somewhat by model, but that changes in the cost of nuclear seem to be

important in a wide range of cases.

The benefits of sensitivity analysis are that it is relatively easy to undertake this analysis, and it nicely
provides comparative statics, that is it shows how one output changes when an input changes. This
allows modelers to get an idea of which parameters are most important to model carefully; and it can
give some policy insights into how outputs change with inputs. The limitation of sensitivity analysis is
that it will often not address the impact of non-linearities if they are present, as indicated above. That is
because, as expressed in Jensen’s inequality, the best alternative under uncertainty may not be equal to
some kind of average of the best alternatives under certainty. Moreover, sensitivity analysis is generally
done in the absence of probabilities, thus the analyst is unable to determine whether “interesting”

effects have much, or even any, likelihood of arising.

Monte Carlo-type Analysis: When a probability distribution over one or various uncertain inputs is
available, a Monte Carlo-type analysis can be performed. In this type of analysis, the analyst is able to
estimate the distribution of the outputs by using draws from the distribution of the inputs. (We call it
“Monte Carlo-type” analysis to include more sophisticated sampling techniques such as Latin Hyper
Cube). In the case of TEaM, we can use Monte Carlo to estimate the probability distribution over
outcomes of interest, given a particular R&D portfolio. This approach is numerically tractable when only
a few uncertain inputs are used, although it gets computationally intensive with a growing number of

uncertain inputs if one wants to ensure that the variance of outputs truly reflects that of inputs. Monte
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Carlo-type analysis can provide a layer of insights above sensitivity analysis. It is particularly useful for
descriptive models, in which we are most interested in gaining an understanding of the state of world. It
is slightly less useful for decision models, in which we are most interested in understanding near term
optimal decisions. In fact, the key limitation to Monte Carlo is that, generally, each run of the model is
run under the assumption of the certainty of the sampled input values. It is possible, but not often done,
to restrict early decisions in a model to be identical across all samples. However, this early scenario
tends to be arbitrary, rather than any response to the actual uncertainty. Monte Carlo cannot tell us
what the impact of uncertainty on the optimal decisions is, just what range of uncertainty over the

outcomes is.

Single Stage Decision under Uncertainty: Like Monte Carlo, this framework explicitly incorporates
uncertainty. Unlike Monte Carlo, this method includes an optimization component that allows the
analyst to determine the impact that uncertainty has on near term optimal decisions, therefore
accounting for the effects of non-linearity. However, this framework does not include learning or
recourse, therefore will miss alternatives with “option value”. It can provide insights into non-linear

problems and problems with risk aversion.

Two-stage Decision under Uncertainty: One step up from the previous is to add a second stage, in
which a second set of decisions may be made after some or all the uncertainty is resolved. Adding this
second stage has proved to be very powerful, allowing for a number of insights not otherwise available.
The most prominent example of this was the work on investment under uncertainty, and the idea of
“real options” (Dixit & Pindyck, 1994). That book, and many others since then, showed that the optimal
near term action is not only significantly quantitatively different, but often qualitatively different as well.

Some near term alternatives have “option value,” that is, they allow for more flexibility in the future to
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change course once the uncertain outcomes have been revealed.

Multi-Stage Decision Making under uncertainty: In the real world, of course, information is revealed
over time, and many decision points exist. In order to reflect this, some models use a framework of
multi-stage sequential DMUU. This framework can be implemented using sophisticated techniques such
as stochastic programming or dynamic programming, with approximate dynamic programming (ADP)
gaining popularity recently. For example, Santen & Anadon (2014) applied ADP techniques to solve R&D
and power capacity expansion decisions in a realistic electricity systems model. Regardless of the
solution technique, it is very computationally intensive. Therefore, most models implement
considerable simplifications in order to implement this framework. Whether the addition of extra stages
beyond 2 or 3 adds considerable insight is an open question [ (Baker E., 2006), (Webster, Santen, &

Parpas, 2012)].

Frameworks to Account for Ambiguity Aversion: There is an increasing literature that suggests that
policy makers should take ambiguity aversion into account when choosing climate change policies [
(Lemoine & Traeger, 2012), (Kunreuther, Heal, Allen, Edenhofer, Field, & Yohe, 2013), (Gilboa,
Postlewaite, & Schmeidler, 2009), (Heal & Millner, 2014)]. The idea is as follows: there is deep
uncertainty around climate change (and climate change technologies) in the sense that scientists do not
agree on a single prior probability distribution. It has been shown that behaviorally many people are in
fact ambiguity-averse (See Ellsberg (1961) for classic case); that is they will choose an alternative with
lower expected value if that alternative is presented as having “certain” probabilities rather than
“ambiguous” probabilities, or as having an aggregated probability distribution rather than a compound
probability distribution. While the Savage (Savage L. J., 1951) Subjective Expected Utility (SEU)

framework, based on a set of very reasonable axioms, does not allow for ambiguity aversion, there exist



58

alternate sets of axioms that do allow for ambiguity-aversion in decision making. There is not, however,
widespread agreement on which framework to use in order to account for ambiguity aversion. In this
paper we apply two simple frameworks found in the literature. The first is MiniMax Expected Utility
(Gilboa & Schmeidler, 1989). This framework allows for using existing probabilities (as opposed to some
frameworks which ignore all probabilities in favor of using very worst-case scenarios). This framework
finds the expected utility for all possible priors, and then chooses the alternative that gives the highest
expected utility under the worst case prior. This approach reflects an extreme ambiguity aversion since
it does not rank or weight the possible priors. It has been shown that a more moderate framework such
as “smooth ambiguity” often will give the MiniMax solution as ambiguity aversion moves to its
maximum (Millner, Dietz, & Heal, 2010). The second approach we consider is a MiniMax Regret
Expected Utility framework. It is similar to a traditional MiniMax Regret framework, but uses the priors
to calculate expected utilities. This framework minimizes the regret of the expected utility for all

possible priors, under the worst case prior.

In Errore. L'origine riferimento non é stata trovata. we present influence diagrams for the one-stage

and two-stage decision frameworks that we consider in this paper.

One-stage:

IAM chooses
best set of —>
technologies

Technology

R&D Investment
Performance

Two-stage:

e IAM chooses
R&D Investment :eql::nology > Stablllza;tlon best set of
erformance goa technologies

Figure 1: Influence Diagrams representing the two decision frameworks. Square nodes represent decisions; oval nodes
represent uncertainties; rounded squares represent functions; diamond nodes represent values.
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The top Influence diagram is a one-stage problem. The key decision (represented by a square node) is
how much to invest in which technologies. The key uncertainty (represented by an oval node) is the
performance of the technologies starting in 2030. The arrow going into the oval indicates that the
probability distribution over technology performance is conditional on the R&D investment decision. We
model the next step as a function: each IAM, when given a set of technology performance parameters
and a Representative Concentration Pathway (RCP)? , minimizes the cost of the RCP by choosing
deployment investments in different energy technologies. The overall objective (represented by the
diamond value node) is to minimize the cost of abatement plus the climate damages plus the cost of
R&D investment. Climate damages have some relevance in this framework even though damages are
primarily related to the RCP; different technological outcomes can lead to slightly different emissions
paths under the RCPs and therefore to different damages. In the unconstrained cases, technology is the

only thing that drives any differences in the damages.

The lower Influence diagram represents a two-stage problem of sequential DMUU. In this problem the
RCP — either 2.6 W/m?, 4.5 W/m?, or unconstrained — is chosen after the decision maker learns about
the technology performance parameters. Climate damages play a more important role in this model, as
information about the level of climate damages is in many cases the primary reason for choosing one

RCP over another one. Everything else in this problem is the same as the one stage problem.

The decision maker is a social planner, considering both the cost of the public R&D and the global costs

and benefits of stabilization pathways.

* We consider two RCPs, 2.6 and 4.5 W/m?, roughly equivalent to a 450ppm and 550ppm stabilization goal in the
GCAM model. See Van Vuuren et al. [ (2011), (2013)] for more details on RCPs.

11
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2.2. Optimization models

To implement these frameworks we use a multi-model framework consisting of an IAM and simple
optimization models. The IAM provides the estimated abatement costs and temperatures from climate
change; and the optimization models determine the optimal R&D portfolio. In this section we describe
the specific optimization models that we use to examine the importance of the different decision

frameworks.

2.2.1 One-stage

For this framework, we take the RCP as given. The objective is to minimize the expected total abatement

cost to achieve the given RCP plus climate damages plus the R&D cost.

mlin{E, [*FJACS+S]+KF,} (1)

Where ﬁb\Cs is the total abatement cost (the Net Present Value over the entire time horizon) to achieve

the given RCP s, where S 6{2.6, 4.5, unconstr}. The 'EACS is a random variable whose outcome

depends on the technological outcomes. The probability distribution over the technological outcomes
depends on the portfolio, | z[ll,..., Is]where I; is the level of investment in technology j. F; is the

R&D funding amount for portfolio I:

F=21 (2)

12
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The opportunity cost of R&D funding is represented by a multiplier, k. We include BS , the estimated

damages given RCP s, to be consistent with the second framework. They play some role, but a small one,
since damages are dominated by the RCP, s. We will refer to this as a traditional SEU framework, in

contrast to the MiniMax and MiniMax Regret frameworks below which account for ambiguity aversion.*

2.2.1.1 One-stage MiniMax Models

The MiniMax EU model is presented here:

mlin{m?x[E,(T) [J@ACS +@5]+KF, }} (3)

Where 1 represents the elicitation team, 7 € {FEEM, Harvard, UMass} ; the 1 in parentheses means

that the expectation is being taken using the probability distribution from team t. In this model, for
each portfolio | we find the team that produces the highest expected cost; we then choose the portfolio

that minimizes this cost.

The MiniMax Regret EU model is as follows:

min m3x<[E,(,) [FhC. +5.]+ o ]-min, [E,., [ﬂ\cﬁas]wphﬁ @

Where |, represents a portfolio for team 1. The second “min” expression finds the optimal portfolio for

a given team t. The expression inside the triangle brackets gives the regret, the difference in cost

We are minimizing costs rather than maximizing utility. We are not accounting for risk aversion.

13
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between the portfolio under consideration and the optimal portfolio. We maximize this value across the
teams to find the team distribution that gives us the most regret. Finally, we choose the portfolio that

minimizes this regret.

2.2.2 Two-stage
In this framework, the RCP is a decision rather than an assumption. The objective is to minimize the

expected total abatement cost plus climate damage cost plus R&D cost. This framework is solved only

under traditional SEU.
mlin{EI [minﬂACs+@s}+KF,} (5)

All variables are as defined in the section above. Note that the difference between this framework and
the one-stage is that the RCP, s, is being chosen, and it is being chosen after we learn about the
outcome of technological change. Thus, this is a two stage decision model, with sequential DMUU,

albeit a very simple one.

2.3 Damages and Abatement Cost

The climate damage, represented by Dy, is calculated as follows:

D, =) 8'7T2G, (6)
t

14
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Where T, is the global mean temperature at time t, under RCP s; & is the discount factor; m is a
multiplier that converts the square of temperature to a fraction of GDP lost (based on the formulation in
DICE (Nordhaus 2008); and G; is the GDP (in trillions of dollars) at time t. This results in damages in the
unit of trillions of dollars. The damages will show some variation under different technology scenarios,
since different scenarios lead to slightly different abatement choices through time. However, these

differences are small under an RCP.

Similarly, the TAC is defined as

TAC, =) 5'AC,, (7)
t

Where AC;, is the annual abatement cost (in trillions of dollars) at time t, under an RCP. Note that the

IAMs only report values for every 5 years. We assume that the temperature and the AC are linear

between the reported years.

15
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Section 3 Numerical Example

In this section we describe the numerical example we use to illustrate the roles of the different decision

frameworks.

3.1 Technologies

We consider 5 technology categories: Solar PV, Electricity from Biomass, Liquid Biofuels, Nuclear Fission,
and Carbon Capture and Storage (CCS). We use data on 8 parameters: Levelized Cost of Electricity
(S/kWh) for solar PV; non-energy cost for electricity from biomass ($/KWh) and for liquid biofuels
(S/gallons of gasoline equivalent); conversion efficiency for electricity from biomass and for biofuels
(both in %); overnight capital cost for nuclear ($/kW); additional capital cost for CCS (S/kW); and Energy

Penalty for CCS (%).

3.2 Generation of Payoffs using Energy Economic Models

Frameworks for DMUU (as opposed to sensitivity analysis and Monte Carlo) can be quite
computationally intensive, and therefore are sometimes quite difficult to use with technologically-
detailed IAMs. There have been a number of implementations of 2-stage and multi-stage DMUU
frameworks using versions of models in the DICE family, a relatively simple IAM (See for example
(Webster, Santen, & Parpas, 2012), (Lemoine & Traeger, 2012), (Crost & Traeger, 2010), (Yongyang,
Judd, & Lontzek, 2012), (Traeger, 2013)). Even using the simple DICE model, however, most of the
multi-stage frameworks have made simplifications of the original model. Moreover, DICE has a

simplified technological set up, so while it might be very useful in investigating problems that look into

16
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climate system uncertainties, it provides fewer insights when studying problems concerned with

technological change uncertainty and R&D decision making.

A couple of medium-sized IAMs have made some headway at incorporating stochastic programming,
including WITCH ( (Bosetti & Tavoni, 2009), (Johannes & Tavoni, 2013)), and MERGE (Durand-Lasserve,

Pierru, & Smeers, 2010).

One approach that can be found in the literature is to take a multi-model approach. In this method, a
technologically-detailed IAM is used to estimate the impact of technological change. Then, outputs of
this model are used as input into a simpler decision framework that can explicitly incorporate sequential
decision making. Examples of this approach can be found in Blanford (2009), combining MERGE with a
simple decision model; Baker and Solak (2011) combining GCAM with a simple decision model; Baker
and Solak (2014) combining GCAM with a stochastic programming version of DICE; and Anadon et al
(2014), combining MARKAL with an analysis model to determine an optimal portfolio. In this paper we
provide an example of this kind of analysis. We use modeling outputs from GCAM (Kim, Edmonds, Lurz,
Smith, & Wise, 2006) to compute the payoffs that are used in simple one-stage and two-stage decision
models. The GCAM model follows a protocol that encompasses one unconstrained baseline and two
different RCPs, 2.6 and 4.5 W/m”. A detailed description of the generation of the outputs we use here is
in (Barron & Mcleon, 2014); model characteristics and some basic results of a scenario-based model

comparison are provided in (Bosetti, et al., 2014).

Importance Sampling: For this project we have piloted a new use for an old technique, importance
sampling. Importance sampling has generally been used as a version of Monte Carlo -type analysis,

when the area of interest in the input distribution has very low probability. That is, sometimes the

17
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function of concern is only non-zero over a portion of the distribution with very low probability. If one
samples the distribution randomly, it is possible that there are no points in the sample from the area of
interest. Importance sampling allows one to sample more frequently on the most valuable part of the
distribution, and renormalize back to the actual distribution of interest, correcting for the use of an

importance distribution (Owen & Zhou, 2000).

We use it here for a different reason. We wanted to be able to minimize the number of times we ran the
large IAMs. As we have four alternative sets of distributions (one for each of the three elicitation teams
plus the Combined distribution) and 3’ possible portfolios (three levels of R&D for each of the five
technologies), the number of runs for the IAMs would have been exceedingly high. Thus, we defined a
single “importance sample” for each technology parameter that defined the IAM runs. Given this
sampling of the technology performance space, alternative portfolios can be mimicked by simply
correcting for the different R&D distributions. Chan and Anadon (2014) have also implemented the use
of importance sampling for the Harvard elicitations in a one-stage decision framework for a portfolio of
R&D investments in 6 technology areas and 25 specific technologies using MARKAL to translate

technology into societal/economic outcomes.

We first sample from an importance distribution q; for each technology j. We choose this distribution
so that it covers the range of the elicited distributions of all teams. The elicited distributions are called

the nominal distributions, P~ where there is a nominal distribution for each funding level k, team 7,

and technology j. We then reweight the sampling distribution using the likelihood ratio

P (X) 8)

a; ()
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Specifically, we generated a 1000-point sampling distribution for each technology parameter. We
assume that all technology parameters are independent of each other. This produces an 8-dimensional
1000-point sampling distribution (to account for the 8 technology parameters). Then, for each funding
level for each technology and each team, we reweight the sampling distribution using the elicited

probability distributions P described in ( (Baker, Bosetti, Anadon, Henrion, & Reis, 2014)). Finally, we

multiply the probabilities across the 8 parameters (and re-normalize) to get the probability of each 8-

dimensional point. Thus, each IAM only had to run 1000 points, yet we can analyze a very large number
of underlying probability distributions, for different teams and for different portfolios. These probability
distributions are used to calculate the expected Total Abatement Cost (TAC) and the expected damages.

Such a reweighted sample will have the same expected value as the nominal distribution.

Methods for choosing the importance sample. For the numerical example provided below we used
importance samples that over-weighted the low cost regions of each technology. The idea is that the
high-cost regions for most of the technologies will not be of much interest: when a particular technology
has a high cost it will generally not be competitive and therefore, small differences in the actual cost will
have very little effect on the economy. Errore. L'origine riferimento non é stata trovata. illustrates a
nominal distribution for Solar LCOE along with the covering distribution. A disadvantage of this method
in this case is that, because it samples heavily from the far left of the distributions, and because we are
working with a large number of different underlying nominal distributions that have different supports
(that is the low and high values differ considerably) many of the individual points in the importance
sample have a probability of zero in many of the elicited distributions. This is compounded when we

calculate the probability of the joint event — the eight individual cost and efficiency outcomes. In some
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cases well over half of the 1000 points in the importance sample have probability zero. Thus, in a

situation like this, it may be better to choose an importance sample that more closely mimics the

underlying distributions at hand.
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Figure 2: An illustration of how the importance distribution oversamples low costs. The Nominal distribution shown is for
Harvard Low Funding Solar LCOE.

3.2 Solution Methodology and Model Calibration

3.2.1 Solution Method for One-Stage and Two-Stage decisions

All frameworks are solved using a simple dynamic program, implemented in Excel and Matlab. For

framework two, the two-stage decision, the RCP is chosen in Excel, based on the minimum of the sum of

damages and abatement cost, and then this is used in the Matlab model. The MiniMax and MiniMax

Regret frameworks are solved in Matlab by cycling over each of the teams’ probability distributions for

each technology.
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3.2.2 Calibration

Here we describe some key assumptions and calibration parameters that determine model outputs.

Discount rate: We take 8=5% for our central discount rate when calculating the TAC and Damages, the

discount rate used in GCAM.

Model Outputs: The IAM produces a number of outputs for each of the 1000 points in the importance
sample, including annual abatement AC, ; costs and temperature T; ;. GDP is exogenous for GCAM. The
damages, D, and total abatement cost TAC, are calculated from the outputs as discussed above. The

GCAM model timespan runs until the year 2095.

R&D Funding Amounts: The funding amounts vary considerably by team. One key difference between
the teams is whether the amount includes development, demonstration, and deployment. The Harvard
values include these expenditures; the UMass values do not. FEEM values are based on EU investments;
they include research, development, and dissemination. A second difference is that the UMass team
developed funding amounts in a bottom up way, discussing the number of labs needed to give a
breakthrough a reasonable change; the other teams developed them in a top down way, by looking at

current total government spending.

In this paper we use the same R&D funding amounts for each team: the simple average of the funding
amounts across the three teams (Baker, Bosetti, Anadon, Henrion, & Reis, 2014). One exception to this
is the bioenergy technologies — biofuels and bio-electricity. As Harvard elicited Bio-Fuels and Bio-
Electricity together, we combine both technologies into one category called Bio-Combined in the

Harvard case. For the MiniMax and MiniMax Regret frameworks, we constrain the Bio-Fuels and Bio-
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Electricity funding levels (that is, Low, Mid, or High) to always be the same, so that we can compare all

three teams across the same portfolios.

The team funding amounts were presented as annual amounts in (Baker, Bosetti, Anadon, Henrion, &
Reis, 2014). Here we convert them to Net Present Values using a discount rate of 3% and a time span of
20 years. Each technology has only three alternative funding amounts, a Low, Mid, and High funding

amount.

The technology funding amounts represent actual dollars spent. Theory suggests that the cost to the
economy may be considerably greater, particularly if the funding is being diverted from other R&D
projects. Thus, we consider an opportunity cost multiplier: a value x >1 is multiplied by the funding
amounts. Our central assumption for the opportunity cost is k=4 ( (Nordhaus, 2002), (Popp, 2006). We
also ran experiments using Kk =2 and x =8.

Probabilities: Each elicitation team derived probability distributions over each of the 8 technology
parameters, based on the elicitation data. In order to get the Combined probability distributions, each
of the 8 parameters the probability distributions of the three teams were aggregated using a simple
linear average (Baker, Bosetti, Anadon, Henrion, & Reis, 2014) The four nominal distributions used in the
importance sampling include the Combined probability distributions and each of the three teams’

distributions.

Damage parameter . This parameter converts the square of the temperature into a fraction of GDP
lost. The baseline value in DICE99 (Nordhaus W. D., 2008) is .0035°; we use this for our Low Damage

value. A value of 0.017 is chosen for the High Damage value because it leads to a case where the optimal

> The form of the damage function is slightly different in DICE99, but the baseline damages are very similar.
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RCP varies between 2.6 W/m? and 4.5 W/m?. We use this value to compare the one-stage and two-stage

frameworks.

3.3 Experimental Design

For this example, our experimental design combines sensitivity analysis over some aspects (the

elicitation teams, the climate damages, and the framework) with one-stage and two-stage DMUU.

Decision Making Under
. RCP:
Uncertainty Approach: 26
Traditional SEU 4'5
MiniMax EU ’
Teams: : . Unconstrained
Funding: FEEM Damages: Iif:nL‘lleenwt:rlk' MiniMas regret EU
Combined [—>| Harvard > Low —> 1-stage ’
Team UMass High
. 2-stage
Combined

Figure 3: Framework Description

Errore. L'origine riferimento non e stata trovata. provides a chart illustrating the many choices that can
be made in running these models. In this paper we will focus on results using only the “Combined”
funding amounts (discussed in Section 3.2.2), rather than the individual funding amounts for each team.
For the one-stage Framework we consider three possible approaches to DMUU and three RCPs. For the
two-stage framework the RCP is a decision that is made after the outcome of technological change is

known and we only use a traditional SEU framework.

4 Results

4.1 Framework I: One stage decision making under uncertainty

Errore. L'origine riferimento non é stata trovata. summarizes the results of the one stage problem,

under the assumption of an opportunity cost multiplier equal to 4 (the results were nearly identical for
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opportunity cost multipliers of 2 and 8). The figure shows the optimal portfolio that is obtained using
the probabilities from each team, from the Combined probabilities, and from the MiniMax and MiniMax
Regret implementations, for each RCP assumption and damage level. We show 2.6 W/m? only once
since the optimal portfolio is always the same between the high and low damages. Note that FEEM did
not elicit CCS; the results shown use the combined CCS probabilities in conjunction with the FEEM data,

thus we have shaded these results differently.

We find that, given our data, the most common level of funding in the optimal portfolios is “Low”. To
emphasize this, we have striped any funding level that is different from the “Low” funding level. At this
time we do not have a zero funding level, so we cannot confirm whether the preponderance of “Low”
funding levels is because (1) the investments do not provide a good return on investment and the
optimal would be something closer to zero; or (2) the Low investments are highly productive and so the

marginal returns from higher investments are not warranted.
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Figure 4: One Stage Decision Framework Results. The Figure compares the results of each of the teams’ distributions with the
Combined, the MiniMax, and the MiniMax regret strategies. Horizontal and vertical stripes indicate Medium and High
investment respectively. The CCS blocks are pale for FEEM since they did not elicit CCS values; these results are based on
Combined values.

First we focus on the traditional SEU results and consider how they compare across elicitation teams and
the Combined elicitation results. First, as one would expect, the more stringent 2.6 W/m? stabilization
generally has (weakly) more investment in each technology than the 4.5 W/m? RCP. The one exception,
and therefore the most interesting, is that when using the FEEM elicitation data we find that a Mid-level
investment in bio-electricity is optimal under 4.5 W/m? when damages are high; but only a Low
investment is in the 2.6 W/m? portfolio, which features CCS instead. Note that FEEM did not elicit CCS,

this result is based on the probabilities in the “Combined” distribution.
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The second interesting result is that the Unconstrained stabilization scenario with high damages actually
has some of the highest technology investment. This is because the R&D model is trying to minimize the
cost of abatement plus cost of damages plus R&D investment. The cost of the R&D investment is made
up for by the reduction in damages in the high damage case. Note that the reduction in damages is due
entirely to the improvement in technology: there is no abatement in GCAM in the unconstrained case.
This implies that, in the absence of clear climate policies, investing in technology is still worthwhile and
has some benefits. We have seen in many studies that technology is not enough — climate change will
not be solved by technological breakthroughs alone. But this result says that even if we don’t see any
significant climate policy on the horizon, it still makes sense to forge ahead with investment in energy

technology R&D

Third, if we compare the optimal portfolios to the elicitation results, we see that the optimal portfolio
doesn’t entirely follow the elicitation results. That is, just because a technology has a higher expectation
of technological improvement, it may not justify a higher investment. Based on the elicitations for each
study, in the FEEM elicitation bio-electricity has the lowest improvement. Yet, in the 4.5 W/m?-high
scenario, bio-electricity is the only technology that is invested in at a Mid (rather than Low) level under
the FEEM distributions. In the Harvard study, CCS has the highest return, but is invested in at a Low level
in all portfolios.  Finally, we see, given this data, a great deal of disagreement when using the
technology inputs from the different teams performing the expert elicitations. Given this disagreement,
one possible direction is to look at other optimization approaches such as the MiniMax models, which

we turn to now.

We see that, given the set-up of this model, using the MiniMax EU framework tends to lead to smaller
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investments, taking a more pessimistic view of the R&D returns. This may be because the uncertainty in
this case is only about technology, not about climate damages. In this framework, the RCP and the level
of damages are taken as given; therefore in an extreme ambiguity-averse framework, these factors

receive less negative weight.

The MiniMax Regret, on the other hand, tends to be more optimistic, with larger overall investments
than the MiniMax, the Combined case, and most of the individual teams. This is because in this
framework the objective is to minimize the regret of not being in the best state, so it tends to be the

most optimistic prior that chooses the portfolio.

The question is what to do with this information, especially when frameworks designed to take
ambiguity aversion into account give such differing results? Given near term uncertainty over the
prospects for advancement in climate technologies, how should a decision maker interpret these
results? Since there is no single framework or set of axioms that leads to one ambiguity-aversion
framework, it is difficult to recommend that policy-makers choose one or the other. One potential way
to use these results is to focus on the cases where there is the most difference between the solutions of
the different DMUU approaches, and investigate these particular cases. For example, the key difference
between the optimal portfolios among the three aggregated approaches (Combined, and the two
MiniMax) in the 2.6 W/m? case is the investments in nuclear and CCS, and to some degree the
investments into the bioenergy technologies. This indicates that we may want to look very closely at
these elicitation data sets. When going back to the original elicitations, we see that there is the most
disagreement among the teams in the Nuclear technology; and that the CCS technology results rely
strongly on the elicitation of one team. The bioenergy technologies required significant assumptions for

two of the teams in order to differentiate between efficiency and non-energy costs. This suggests that
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an analyst supporting a decision maker should (1) go back and consider weighting the current set of
elicitations based on a judgment of quality; and/or (2) put resources toward additional, careful

elicitations in these topics.

For the first approach, the analyst can first perform a sensitivity analysis to determine how skewed the
weights need to be from equal in order to change the optimal portfolio. They could then look back at
the studies and judge them for quality. For example, the nuclear elicitation that is most different from
the others also has a very small number of experts. It would be reasonable to consider weighting the
elicitations based on the number of experts in each study. For the second approach, a first step would
be to review the full set of elicitations and other data that is available. For CCS, for example, there have
been a number of studies that could be added into this aggregation [ (Rao, Rubin, Keith, & Granger,
2006), (National Research Council, 2007), (Chung, Patifio-Echeverri, & Johnson, 2011), (Jenni, Baker, &
Nemet, 2013)]. If additional studies don’t exist, then a full-scale elicitation may well be justified.
Previous work indicates that the value of better information in the form of careful, well-funded

elicitations is far above the cost of such elicitations (Baker & Peng, 2012).

4.2 Framework II: Two-stage decision making under uncertainty

In the two-stage framework, there is an “option” — to choose an RCP based on the outcome of technical
change. When damages are low, then it is optimal to choose 4.5 W/m” about 80-100% of the time
(depending on the R&D portfolio), and unconstrained the rest of the time. In this case of low damages,
the two-stage results are not very interesting: in three out of four cases we find that the optimal
portfolio is the same for the 2-stage problem, the unconstrained-low 1-stage, and 4.5 W/m*low 1-
stages; for Harvard, the 2-stage portfolio matches their 4.5 -low. The high damage case is more

interesting and the results are shown in Errore. L'origine riferimento non é stata trovata., where we
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compare the results for the 1-stage problem under 2.6 and 4.5-high alongside the 2-stage results. When
damages are high the investment in technology has a large impact on how often the 2.6 W/m? RCP is
chosen over the 4.5 W/m?®. In the Combined case, when investment is low in all technologies, 2.6 W/m?’
is optimal only 5% of the time. But, when investment is high in all technologies, 2.6 W/m? is optimal 43%
of the time. Thus, in this case, technology not only reduces the cost of a given RCP, it also causes the

optimal RCP to become more stringent, thus reducing damages.

For the Harvard data, the optimal portfolio is the same for these three cases. For the FEEM data, the 2-
stage optimal portfolio is the same as the 4.5 W/m*-high; for UMass data is it the same as 2.6 W/m”.
But, the interesting result is for the Combined case. We see that the results of the two-stage framework
is different from both 2.6 W/m? and 4.5 W/mz-high, and not an average or combination of the two.
Biofuels is not optimal at the Mid level in either the 2.6 W/m? or the 4.5 W/m*-high; yet it is optimal in
the 2-stage. This is an illustration of the kind of results that can only be seen if we explicitly consider a 2-
stage problem. The investment in Biofuels, at least when using the combined data, has an option-value

not seen in the 1-stage problems, allowing for lower damages by switching to 2.6 W/m? more often.
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Figure 5: Comparison of One Stage - High and Two Stage - High Decision Framework Results
5 Conclusions

In this paper we provide a brief overview of decision frameworks that can be used to consider the

optimal climate-energy technology R&D investment under uncertainty about the prospects for

technological change. We then explore the implications of different decision frameworks, especially

when there are multiple potential probability distributions for each technology.

Methodologically, we investigate this problem using importance sampling, a technique with great

promise for combining large IAMs with expert elicitations. This is a different application of importance

sampling, which has typically been used to estimate statistics in cases where the region of interest is of

low probability. We use it, instead, to enable a numerically efficient way to use large IAMs for
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uncertainty analysis. We choose one sampling distribution for each technology, and use that to generate
an importance sample. This sample is then run through IAMs to produce outputs of interest such as total
abatement cost. The method of importance sampling is then used to reweight the outputs using the
nominal distributions resulting from a set of expert elicitations. This allows us to consider the results of
multiple elicitation teams as well as multiple funding levels while keeping the number of runs of the

large scale models to a reasonable number.

In future work we suggest that the sampling distribution be chosen carefully to avoid a large number of
points with zero or near-zero probability. This is particularly important in a case like this where we have
probability distributions over 8 parameters that need to be combined through multiplication. Rather
than over-sampling at the low end of the distribution a better strategy may be to use a combination of

the low and high Combined distribution as the sampling distribution.

From the numerical example using elicitation results from three large scale multi-technology studies, we
note a set of findings. First, the results of the portfolio optimization do not directly follow the results of
the underlying elicitation data: the optimal investment depends on more than the just the technological
outcome. That is, one technology may have the most promising future in terms of the overall
improvement that can be achieved with R&D investment, but it may not turn out to be the best
investment. The overall benefit of an R&D program depends on how that technology competes with the
other technologies available in the economy and how it interacts with climate policy. On the other hand,
we see that the optimal portfolio does depend heavily on the underlying probability elicitations (by
looking at the differences between elicitation teams). Thus, the conclusion is that both parts of this
equation are crucial for crafting R&D policy — understanding the prospects for technological

advancement and understanding the complex interactions between technologies in the economy.
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An interesting result that we have not seen explicitly in the literature is that energy technology R&D is
valuable even in the absence of climate policy. We saw that the optimal portfolio was particularly high in
the unconstrained scenario with high climate damages. While technology alone is not the solution to
climate change, it is apparently better than nothing. This suggests that policy makers should move
ahead with investment in energy technology R&D even if they are uncertain about the future climate
policy environment. A similar result was found in Baker & Solak (2014), where the optimal portfolio was
quite robust in the face of very different policy environments, from one based on Nordhaus’ model
(Nordhaus W. D., 1993) to one based on the recommendations of Al Gore[ (2006)]. That paper,

however, did not consider a “do nothing” policy.

By comparing a one-stage model, which takes the RCP as given regardless of the outcomes of technical
change, and comparing it to a simple two-stage model, in which the RCP is chosen knowing which
technologies have been successful, we illustrated that some technologies may have an “option value”
that cannot be easily identified in one-stage frameworks. Specifically, in our example, we found that
when the RCP was fixed at 2.6 W/m? or 4.5 W/m? the optimal investment in biofuels was Low; but when
the stabilization was chosen after the realization of technical change, the optimal investment in biofuels
was Mid. This implies that some care should be taken to identify technologies (and other near-term
alternatives) that have option value, in allowing for more flexibility in the future to respond as more is

learned.

There is a movement in part of the literature to take ambiguity aversion into account when making
optimal policy [(Gilboa, Postlewaite, & Schmeidler, 2009), (Millner, Dietz, & Heal, 2010), (Lemoine &
Traeger, 2012) (Kunreuther, Heal, Allen, Edenhofer, Field, & Yohe, 2013), (Heal & Millner, 2014)]. This
suggestion is quite controversial and contentious [e.g. (Sims, 2001)]. We have presented results on the

optimal portfolio using a traditional SEU framework with the results of two very simple MiniMax
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frameworks. We find that different MiniMax frameworks can produce very different results — some with
more and some with less investment than traditional SEU. We suggest that while these results may not
give a clear guidance to policy makers, they may instead be more useful to guide future careful study

and analysis of how to use available elicitations.

This analysis illustrates that optimization models are not the end of the analysis, providing a clear single
best strategy. Rather, they are an important part of the analysis to inform decisions, and can provide
insights that are not otherwise easy to see (such as which technologies have option value) or on the
other hand provide evidence for existing intuitions that are otherwise difficult to support (such as the
value of energy technology R&D even in the absence of climate policy). While there will always be
aspects of policy decision making that cannot be captured by models or data, this analysis indicates the

importance of using models and data to inform decisions.
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